注册 登录  
 加关注
查看详情
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

云鹤的博客

闲云野鹤,物我两忘,唯有朋友记心间!

 
 
 

日志

 
 

怪题:8×8=65?  

2009-06-23 07:14:21|  分类: 默认分类 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
 

 

引用

理睬怪题:8×8=65?

怪题:8×8=65? - 云鹤 -            云鹤的博客

 

 

 

 

附题:

哥德巴赫猜想(Goldbach Conjecture)

公元1742年6月7日德国的业余数学家哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:

(a) 任何一个n ³ 6之偶数,都可以表示成两个奇质数之和。

(b) 任何一个n ³ 9之奇数,都可以表示成三个奇质数之和。

这就是著名的哥德巴赫猜想。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如:

6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,

16 = 5 + 11, 18 = 5 + 13, . . . . 等等。

有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chen‘s Theorem) ¾ “任何充份大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。

在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称 “s + t ”问题)之进展情况如下:

1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。

1924年,德国的拉特马赫(Rademacher)证明了 “7 + 7 ”。

1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。

1937年,意大利的蕾西(Ricei)先后证明了 “5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。

1938年,苏联的布赫 夕太勃(Byxwrao)证明了 “5 + 5 ”。

1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。

1948年,匈牙利的瑞尼(Renyi)证明了 “1 + c ”,其中c是一很大的自然 数。

1956年,中国的王元证明了 “3 + 4 ”。

1957年,中国的王元先后证明了 “3 + 3 ”和 “2 + 3 ”。

1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”,

中国的王元证明了 “1 + 4 ”。

1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了 “1 + 3 ”。

1966年,中国的陈景润证明了 “1 + 2 ”。

最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测

  评论这张
 
阅读(445)| 评论(2)
推荐 转载

历史上的今天

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018